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ABSTRACT. We study the boundary structure for w∗-compact subsets of dual
Banach spaces. Being more precise, for a Banach space X , 0 < ε < 1 and T
a subset of the dual space X∗ such that

⋃
{B(t, ε) : t ∈ T} contains a James

boundary for BX∗ we study different kind of conditions on T , besides T being
countable, which ensure that

(SP) X∗ = spanT
‖·‖
.

We analyze two different non separable cases where the equality (SP) holds:
(a) if J : X → 2BX∗ is the duality mapping and there exists a σ-fragmented
map f : X → X∗ such that B(f(x), ε)∩ J(x) 66= ∅ for every x ∈ X , then (SP)
holds for T = f(X) and in this case X is Asplund; (b) if T is weakly count-
ably K-determined then (SP) holds, X∗ is weakly countably K-determined and

moreover for every James boundary B of BX∗ we have BX∗ = co(B)
‖·‖

. Both
approaches use Simons’ inequality and ideas exploited by Godefroy in the sep-
arable case (i.e., when T is countable). While proving (a) we prove that X is
Asplund if, and only if, the duality mapping has an ε-selector, 0 < ε < 1, that
sends separable sets into separable ones. A consequence of the above is that the
dual unit ball BX∗ is norm fragmented if, and only if, it is norm ε-fragmented
for some fixed 0 < ε < 1. Our analysis is completed by offering a characteri-
zation of those Banach spaces (non necessarily separable) without copies of `1

via the structure of the boundaries of w∗-compact sets of their duals. Several ap-
plications and complementary results are proved. Our results extend to the non
separable case results by Godefroy, Contreras-Payá and Rodé.

1. INTRODUCTION

Given a Banach space X and a w∗-compact subset K ⊂ X∗, a James boundary
for K is a subset B of K such that for every x ∈ X there exists some b ∈ B such
that b(x) = sup {k(x) : k ∈ K}. If K is moreover convex the classical James
boundary ExtK of the set of the extreme points of K allows us to recover K
through the equality K = co(ExtK)

w∗
. In general, James boundaries can be

even disjoint of the set of extreme points. Therefore the mere idea of studying
how properties of a given boundary are reflected on K has been a research field
of continuous interest with applications to the theory of general Banach spaces,
optimization, Fourier analysis, etc. Here is a non exhaustive list of papers and
books dealing with these kind of problems [4, 5, 9, 12, 15, 16, 22, 23, 26, 28, 38,
40, 47]: the reference [13] offers an excellent survey about infinite dimensional
convexity and in particular about integral representation theorems and boundaries.
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Our starting point is the following result:

Theorem 1.1 ([4, 13, 16]). LetX be a Banach space, 0 < ε < 1 and T a countable
subset of X∗ such that

⋃
{B(t, ε) : t ∈ T} contains a James boundary for BX∗ .

Then X∗ = spanT ‖·‖ and therefore X∗ is separable.

Note that under the conditions in Theorem 1.1, once we know thatX∗ is separa-
ble a result by Rodé, see [40], can be used to obtain that for every James boundary

B of BX∗ we have BX∗ = co(B)
‖·‖X∗ : using Fonf and Lindenstrauss’ terminol-

ogy, [12], when the last equality holds we will say that B has property (S) –(S)
stands for strong.

We aim in this paper to extend the results above to the non separable case (T
will be then non countable) and thus answer a question raised in [38]. We envisage
two different ways of extending the previous results to the non separable case:
X Using ε-selectors for the duality mapping. If (X, ‖ · ‖) is a Banach space the
duality mapping J : X → 2BX∗ is defined at each x ∈ X by

J(x) := {x∗ ∈ BX∗ : x∗(x) = ‖x‖}.
Our main result here, Theorem 4.1, states that if f : X → X∗ is a σ-fragmented

map such that B(f(x), ε) ∩ J(x) 66= ∅ for every x ∈ X then X∗ = span f(X)
‖·‖

and in this case X is Asplund.
X Using descriptive properties of T . Our result here, Theorem 5.1, says that if
T ⊂ X∗ is weakly countably K-determined and there exists 0 < ε < 1 such that⋃
{B(t, ε) : t ∈ T} contains a James boundary for BX∗ , then X∗ = spanT ‖·‖ is

weakly countablyK-determined and every James boundaryB ofBX∗ has property
(S).

Since every separable metric space is countably K-determined our second ap-
proach clearly extends Theorem 1.1 and its consequence above. The notion of
σ-fragmented map, see Definition 1, is truly wide and in particular each function
with countable range is σ-fragmented: thus our first approach also extends Theo-
rem 1.1.

A brief description of the contents of the paper follows. Section 2 is devoted to
the study of the notion of σ-fragmentability for single-valued and set-valued maps.
We obtain a characterization of set-valued σ-fragmented maps via ε-selectors that
are either piecewise barely constant or piecewise barely continuous, Theorem 2.1.
σ-fragmented maps are precisely the uniform limits of piecewise barely constants
maps, Corollary 2.2; pointwise cluster points of σ-fragmented maps are σ-frag-
mented, Proposition 2.3. The relationship between σ-fragmentability and networks
is stated in one of the key results in this paper, Theorem 2.5, that leads to the
other key result Theorem 2.8: the last result states how σ-fragmented maps send
separable sets into separable ones.

In Section 3 we specialize the results of the previous section for the identity
map from a Banach space equipped with its weak topology into itself with the
norm metric. By doing so we exhibit several properties of σ-fragmented Banach
spaces following the scheme presented in [31] for the renorming case.

In Section 4 we prove one of our main results already commented, Theorem 4.1.
We also characterize Asplund spaces as those Banach spaces X for which the du-
ality mapping J has an ε-selector, 0 < ε < 1, f : X → X∗ that sends separable
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subsets of X into separable subsets of X∗, Theorem 4.2 and Corollary 4.3. A con-
sequence of the above is that the dual unit ballBX∗ is norm fragmented if, and only
if, it is norm ε-fragmented for some fixed 0 < ε < 1, Corollary 4.6. The section
is closed with Theorem 4.7 and its Corollary where results as above are proved for
any w∗-compact subset of X∗ .

Section 5 starts with the proof of our Theorem 5.1 already presented above. The-
orem 5.4 offers a characterization of those Banach spaces (non necessarily sepa-
rable) without copies of `1 via the structure of the boundaries of w∗-compact sets
of their duals and the topology γ on X∗ of uniform convergence on bounded and
countable sets of X . The paper is finished by giving our proof in Corollary 5.6 of
the fact that for a dual Banach space X∗ with property C all boundaries for BX∗
have property (S).
A bit of terminology: Most of our notation and terminology is standard other-
wise it is either explained here or whenever it is needed: unexplained concepts and
terminology can be found in our standard references for Banach spaces [5, 9] and
topology [7, 29]. By letters T,E,X, . . . we denote topological spaces here. Some-
times our topological spaces are assumed to be metric and then the letters d, ρ, . . .
denote the metrics on them. If (E, ρ) is a metric space, x ∈ E and δ > 0 we
denote by Bρ(x, δ) (or B(x, δ) if no confussion arises) the open ρ-ball centered at
x of radius δ; if A ⊂ E we write

diam(A) := sup{d(x, y) : x, y ∈ A}.
All our vector spacesE,X, . . . are assumed to be real. SometimesE is assumed

to be a normed space with the norm ‖·‖: the letterX is reserved to denote a Banach
space. Given a subset S of a vector space, we write co(S), aco(S) and span(S)
to denote, respectively, the convex, absolutely convex and linear hull of S. In the
normed space (E, ‖ · ‖) the unit ball {x ∈ E : ‖x‖ ≤ 1} is denoted by BE .
Thus the unit ball of E∗ is BE∗ . If S is a subset of E∗, then σ(E,S) denotes the
weakest topology for X that makes each member of S continuous, or equivalently,
the topology of pointwise convergence on S. Dually, if S is a subset of E, then
σ(E∗, S) is the topology for E∗ of pointwise convergence on S. In particular
σ(E,E∗) and σ(E∗, E) are the weak (w) and weak∗ (w∗) topologies respectively.
Of course, σ(X,S) is always a locally convex topology and it is Hausdorff if and
only if X∗ = spanSw∗ and similarly for σ(X∗, S). Given x∗ ∈ E∗ and x ∈ E,
we write 〈x∗, x〉 and x∗(x) to denote the evaluation of x∗ at x.

2. σ-FRAGMENTED MAPS

Our main tool to face the problems presented in the introduction is the notion
of σ-fragmented map that was introduced in [26] in order to deal with selection
problems. Since its introduction this notion has been used in different settings by
different authors as for instance in [35]. In this section we will present a detailed
study of σ-fragmented maps which is close in spirit to the properties studied for
σ-continuous maps in connection with renorming properties of Banach spaces in
[32].

Definition 1 ([26]). Let f be a map from a topological space (T, τ) into a metric
space (E, ρ). Let S be a subset of T . We say that f |S is ρ-fragmented down to ε
or ε-fragmented for some ε > 0, if whenever C is a non-empty subset of S, there
exists a τ -open subset V in T such that C ∩V 6= ∅ and ρ−diam(f(C ∩V )) < ε:
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we simply use fragmented instead of ρ-fragmented when ρ is understood. Given
ε > 0 we say that f is ε-σ-fragmented if there exists countable family of subsets
{T εn : n ∈ N} that covers T such that f |T εn is ε-fragmented for every n ∈ N.

The map f is said to be σ-fragmented if it is ε-σ-fragmented for each ε > 0.

For set-valued maps the corresponding notion of σ-fragmentability is below:

Definition 2 ([26]). Let F be a set-valued map from a topological space (T, τ)
into the subsets of a metric space (E, ρ). Let S be a subset of T . We say that F |S
is fragmented down to ε for some ε > 0, if whenever C is a non-empty subset of
S, there exists a τ -open subset V of S with V ∩ C 6= ∅ and a subset D of E with
ρ−diam(D) < ε such that F (t)∩D 6= ∅ for every t ∈ V ∩C. Given ε > 0 we say
that F is ε-σ-fragmented if there exists countable family of subsets {T εn : n ∈ N}
that covers T such that F |T εn is ε-fragmented for every n ∈ N.

The set-valued map F is said to be σ-fragmented if it is ε-σ-fragmented for each
ε > 0.

It is easily proved that in the above definitions of ε-fragmentability for f and
F the sets “C’s” can be taken to be closed without loss of generality. The easiest
but non trivial examples of σ-fragmented maps are provided by the class of maps
introduced in the following definition: we refer to [30] for the concept of barely
continuous function.

Definition 3. A map f from a topological space (T, τ) into a metric space (E, ρ) is
said to be barely continuous, (resp. barely constant) if for every non-empty closed
setA ⊂ T the restriction f |A has at least one-point of continuity (resp. there exists
an τ -open set W ⊂ T such that W ∩A 6= ∅ and f |A∩W is constant).

We say that f is piecewise barely continuous (resp. piecewise barely constant)
if there exists a countable family of subsets {Tn : n ∈ N} that covers T such that
f |Tn is barely continuous (resp. barely constant) for each n ∈ N.

Baire’s Great Theorem establishes that a map f from a complete metric space
T into a Banach space E is barely continuous if, and only if, f is the pointwise
limit of a sequence of continuous functions, i.e., f is a Baire one map, see [5,
Theorem I.4.1]. It was proved in [26, Corollary 7] that a map f from a perfectly
paracompact space T into a Banach spaceE is σ-fragmented with closed sets T εn in
Definition 1 if, and only if, it is a Baire one map. Corollary 7 in [26] is based upon
the approximation result [26, Theorem 5] that is established there for σ-fragmented
maps by closed sets T εn: if we drop off the closedness of the T εn’s and only care
about σ-fragmentability we can prove the following:

Theorem 2.1. Let F be a set-valued map from a topological space (T, τ) into the
subsets of a metric space (E, ρ). The following statements are equivalent:

(i) F is σ-fragmented;
(ii) for every ε > 0 there exists a piecewise barely constant map fε : T → E

such that ρ− dist(fε(t), F (t)) < ε for every t ∈ T .
(iii) for every ε > 0 there exists a piecewise barely continuous map fε : T → E

such that ρ− dist(fε(t), F (t)) < ε for every t ∈ T .

Proof. (i)⇒(ii) Fix ε > 0. According to Definition 1 let us decompose T as T =⋃∞
n=1 T

ε
n in such a way that for each non-empty subsetC of T εn there exists an open



JAMES BOUNDARIES AND σ-FRAGMENTED SELECTORS 5

subset V of T and a subset D of E with ρ − diam(D) < ε, such that V ∩ C 6= ∅
and

F (t) ∩D 6= ∅ for every t ∈ V ∩ C.
Without any loss of generality we can assume that the sets {T εn : n ∈ N} are
pairwise disjoint: now we will construct for every n a barely constant function
f εn : T εn → E with

ρ− dist(f εn(t), F (t)) < ε for every t ∈ T εn.
Once the above has been proved, statement (ii) is satisfied if we define

fε(t) := f εn(t) for t ∈ T εn, n ∈ N.
Let us fix n ∈ N and let us construct f εn. Since F |T εn is ε-fragmented, an argument
of transfinite induction provide us with well ordered families of open subsets {Gγ :
γ < Γnε } of T εn together with subsets {Dγ : γ < Γnε } ofE with ρ−diam(Dγ) < ε,
γ < Γnε , such that for each µ < Γnε we have

Mµ := Gµ \
(⋃
{Gγ : γ < µ}

)
6= ∅ and F (t) ∩Dµ 6= ∅ for every t ∈Mµ

and
T εn =

⋃
{Gγ : γ < Γnε }.

For each γ < Γnε we pick a point yγ in Dγ and define f εn(t) := yγ whenever
t ∈ Mγ . The map f εn : T εn → E is barely constant. Indeed, if for a non-empty
subset A of T εn we define γ0 to be the first ordinal with A ∩Gγ0 6= ∅ then we have
that f εn is constant on A ∩Gγ0 because

A ∩Gγ0 ⊂Mγ0 = Gγ0 \
⋃
{Gβ : β < γ0}

and f εn(t) = yγ0 for every t ∈ Mγ0 . On the other hand, since γ < Γnε and t ∈ Mγ

imply that f εn(t) = yγ with

yγ ∈ Dγ , ρ− diam(Dγ) < ε and F (t) ∩Dγ 6= ∅,
we conclude that

ρ− dist(f εn(t), F (t)) < ε for every t ∈ T εn,
and the proof is over.

Being the implication (ii)⇒(iii) obvious we prove (iii)⇒(i). Fix ε > 0 and take
fε : T → E such that we can decompose T =

⋃
{T εn : n ∈ N} and fε|T εn is barely

continuous for each n ∈ N with

ρ− dist(fε(t), F (t)) <
ε

3
for every t ∈ T.

If C is a non-empty closed subset of T εn, then there exists an open set V of T such
that V ∩ C 6= ∅ and ρ− diam(fε(V ∩ C)) < ε

3 . If we define

D := {y ∈ E : ρ− dist(y, fε(V ∩ C)) <
ε

3
}

then we have that ρ− diam(D) < ε and F (t) ∩D 6= ∅ for every t ∈ V ∩ C. The
proof is over. �

When we deal with a single valued map the above result is the key to prove that
the barely constant maps together with countable splitting and limit points produce
all σ-fragmented maps.
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Corollary 2.2. A map f from a topological space (T, τ) into a metric space (E, ρ)
is σ-fragmented if, and only if, there exists a sequence {fn : T → E, n ∈ N}, of
piecewise barely constant maps that uniformly converges to f .

Proof. By Theorem 2.1 the map f : T → E is σ-fragmented if, and only if,
we have that for ε = 1

n , n ∈ N, there exists a piecewise barely constant map
fn : T → E with ρ(fn(t), f(t)) < 1

n for all t ∈ T . �

Next we show that σ-fragmentability is in fact preserved when taking pointwise
cluster points of sequences of σ-fragmented maps:

Proposition 2.3. Let f be a map from a topological space (T, τ) into a metric
space (E, ρ). If there exists a sequence {fn : T → E : n = 1, 2, . . .} of σ-
fragmented maps with

f(t) ∈ {fn(t) : n = 1, 2, . . .}ρ for every t ∈ T,
then f is σ-fragmented.

Proof. Let us fix ε > 0 and let us define the sets

Sεn :=
{
t ∈ T : ρ(f(t), fn(t)) <

ε

3
}

n = 1, 2, . . .

Clearly T =
⋃∞
n=1 S

ε
n and for every n we can also decompose T =

⋃∞
m=1 T

n,ε
m in

such a way that fn|Tn,εm
is ε

3 -fragmented for every m = 1, 2, . . .. Observe that we
have

Sεn =
∞⋃
m=1

Sεn ∩ Tn,εm and T =
∞⋃

n,m=1

Sεn ∩ Tn,εm .

Now, for every pair of n,m ∈ N if we take a non-empty subsetC of Sεn∩T
n,ε
m , then

there exists a non-empty open set V of T with V ∩ C 6= ∅ and ρ− diam(fn(V ∩
C)) < ε

3 ; the last inequality and the fact that C ⊂ Sεn leads to

ρ− diam(f(V ∩ C)) < ε,

when bearing in mind the definition of Sεn. The proof is over. �

For maps with values in a normed space (E, ‖ · ‖) the term σ-fragmented will
always refer to σ-fragmentability with respect to the given norm ‖ · ‖ in E.

Corollary 2.4. Let f be a map from a topological space (T, τ) into the normed
space (E, ‖ · ‖). If there exists a sequence {fn : T → E : n = 1, 2, . . .} of
σ-fragmented maps with

f(t) ∈ {fn(t) : n = 1, 2, . . .}
w

for every t ∈ T,
then f is σ-fragmented.

Proof. It is easily checked that linear combinations of σ-fragmented maps are
σ-fragmented. Hence the Q-linear combinations of {fn : n = 1, 2, . . .} is a count-
able family {gn : T → E : n = 1, 2, . . .} of σ-fragmented maps for which
Hahn-Banach theorem, [9, Theorem 3.19], gives us that

f(t) ∈ {gn(t) : n = 1, 2, . . .}‖·‖ for every t ∈ T.
We apply now Proposition 2.3 and the proof is finished. �

The following definition can be found in [20].
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Definition 4 (Hansell, [20]). A family of subsets E in a topological space T is said
to be scattered if E is disjoint and there exists a well ordering ≤ of E such that for
every E ∈ E the set ∪{M ∈ E : M ≤ E} is open relative to ∪E . A family of
subsets E is said to be σ-scattered if it can be decomposed into a countable union
E =

⋃∞
n=1 En such that every family En is scattered.

Given a map f : T → E between topological spaces, we say that a family B
of subsets of T is a function base for f if, whenever V is open in E, then f−1(V )
is union of sets of B, i.e., B is a function base for f if it is a network in T for
the topology given by

{
f−1(V ) : V is open in E

}
, see [7, p. 170] for the notion

of network. We recall that a family {Fi : i ∈ I} in a topological space (T, τ) is
said to be discrete if for every point x ∈ T there exists a neighbourhood U of x
such that U meets at most one member of the family {Fi : i ∈ I}, [7, p. 33].
Recall also that a family of subsets {Dj : j ∈ J} of T is a refinement of the family
{Cl : l ∈ L} if

⋃
j∈J Dj =

⋃
l∈LCl and each Dj is contained in some Cl, [7,

p. 165].

We note that next result already appeared in [20, Theorem 1.10] for the very
particular case of f being the identity map id : (T, τ) → (T, ρ) where ρ is a
metric on T whose associated topology is finer than τ . Next theorem exhibits the
relationship between the notion of σ-fragmented map and the previous concept
of map with σ-scattered function base introduced by Hansell, see [19] and the
references therein.

Theorem 2.5. Let f be a map from a topological space (T, τ) into the metric space
(E, ρ). The following statements are equivalent:

(i) f is σ-fragmented;
(ii) if {Di : i ∈ I} is a discrete family of subsets in (E, ρ) then the family
{f−1(Di) : i ∈ I} has a σ-scattered refinement;

(iii) f has a σ-scattered function base.

Proof. (i)⇒(ii) Let {Di : i ∈ I} be a discrete family in (E, ρ) and let us define

Di,p :=
{
x ∈ Di : Bρ(x, 1/p) ∩Dj = ∅ for each j ∈ I, j 6= i

}
for every positive integer p. We clearly have Di =

⋃∞
p=1Di,p for every i ∈ I

and the family {Di,p : i ∈ I} is 1/p-discrete –meaning that the distance between
two different elements of the family is at least 1/p, for every p = 1, 2, . . . Fix
the positive integer p and let us use that f is 1/p − σ-fragmented to produce the
decomposition T =

⋃∞
n=1 T

1/p
n such that, for every n we have a well ordered

family of relatively open subsets {Gn,pγ : γ < Γ1/p
n } on T 1/p

n which covers T 1/p
n

and provide us with the scattered family

{Mn,p
µ := Gn,pµ \

⋃
{Gn,pβ : β < µ} for µ < Γ1/p

n }

such that
ρ− diam(f(Mn,p

µ )) <
1
p

for every µ < Γ1/p
n .

The 1/p-discreteness of the family {Di,p : i ∈ I} implies that the set Mn,p
µ meets

at most one member of the family {f−1(Di,p) : i ∈ I}. Thus the family formed
by all the non void sets of the form

{Mn,p
µ ∩ f−1(Di,p)},
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for i ∈ I and µ < Γ1/p
n,p is scattered for fixed integers n and p because any subset

of ordinals is a well ordered set.
All things considered we conclude that

∞⋃
n,p=1

{Mn,p
µ ∩ f−1(Di,p) : i ∈ I, µ < Γ1/p

n }

is a σ-scattered refinement of the family {f−1(Di) : i ∈ I} and (ii) is fulfilled.

(ii)⇒(iii) Stone’s theorem, [7, Theorem 4.4.3], provides us with a σ-discrete base
B for the metric topology in (E, ρ), that is, B is base for the topology and it
can be split as B =

⋃∞
n=1 Bn with each Bn is discrete. According to (ii) each

f−1(Bn) has a σ-scattered refinement, that is, there exist scattered families Enm in
T with

⋃∞
m=1 Enm being a refinement of f−1(Bn). Observe that

⋃∞
n,m=1 Enm is a

σ-scattered refinement of f−1(B). Furthermore, we claim that
⋃∞
n,m=1 Enm is a

function base of f . Indeed, given an open set V ⊂ E and x ∈ f−1(V ) there exists
B in some Bn such that x ∈ f−1(B) ⊂ f−1(V ); from the equality⋃

B∈Bn

f−1(B) =
⋃
m

⋃
C∈Enm

C

and the facts that {f−1(B) : B ∈ Bn} are disjoint together with
⋃∞
m=1 Enm being a

refinement of f−1(Bn) we infer that there exists C in some Enm such that

x ∈ C ⊂ f−1(B) ⊂ f−1(V ),

and the proof for this implication is over.

(iii)⇒(i) Let E =
⋃∞
n=1 En be a function base for f with En scattered family for

every n ∈ N, i.e., En = {Enα : α < Γn} and Enα ⊂ Unα \
⋃
{Unβ : β < α} for

some well ordered family of open sets {Unα : α < Γn} in T . If we fix Tn :=⋃
{Enα : α < Γn} and for every α < Γn we choose tnα ∈ Enα , then we can define

fn(t) := f(tnα) for every t ∈ Tn when t ∈ Enα . The function fn is barely constant
on Tn: if A ⊂ Tn is non-empty and α0 is the first ordinal with A ∩ Unα0

6= ∅ then
we have that

A ∩ Unα0
∩ Tn ⊂ Enα0

∩ Tn,
and therefore fn(t) = fn(tnα0

) for every t ∈ A ∩ Unα0
∩ Tn. Now we extend fn to

the whole T by defining it as a constant function on T \ Tn with a fix but arbitrary
value on this set. Since E is a function base for f , we easily obtain that

f(t) ∈ {fn(t) : n = 1, 2, . . .}

for every t ∈ T : indeed, given ε > 0 there exist a positive integer m and β < Γm,
such that t ∈ Emβ ⊂ f−1(Bρ(f(t), ε)), thus fm(t) = f(tmβ ) ∈ Bρ(f(t), ε). Now
Proposition 2.3 applies to conclude that f is σ-fragmented and the proof is over.

�

Remark 2.6. If the scattered function base for a map f can be constructed with
sets which are difference of closed sets, then the map f enjoys properties which
are close to measurability; we note that under this hypothesis f is in fact Borel
measurable when the domain space is, for instance, a complete metric space or a
Gulk’o compact, see [21, 20, 19].



JAMES BOUNDARIES AND σ-FRAGMENTED SELECTORS 9

We recall that a set S ⊂ T is a Souslin-F-set in the space (T, τ) if S is the
result of the Souslin operation applied to closed sets of T , i.e., for some collection
of closed sets

{
Fn1,n2,...,nk : (n1, n2, . . . , nk) ∈ N(N)

}
, indexed in the set N(N) of

finite sequences of positive integers, we have

S =
⋃
α∈NN

∞⋂
k=1

{
Fα|k

}
,

where α|k := (n1, n2, ..., nk) when α = (n1, n2, . . . , nk, . . . ) ∈ NN. Every
Borel set in a metric space is a Souslin-F-set, [41, Theorem 44]. A map between
metric spaces is called analytic if the preimage of every open set is a Souslin-F-set.
Bearing in mind the seminal results by R. Hansell in [18] we can now state here
the following:

Corollary 2.7. Every analytic (in particular every Borel measurable) map from a
complete metric space (T, d) into a metric space (E, ρ) is σ-fragmented.

Proof. Theorem 3 of R. Hansell in [18] states that every analytic map from a com-
plete metric space into a metric space has a σ-discrete function base. Since every
discrete family of sets is clearly scattered, the conclusion in the corollary straight-
forwardly follows from Theorem 2.5, see also [20, Lemma 5.9]. �

An important property of Borel maps from complete metric spaces into metric
spaces is that they send separable subsets of the domain into separable subsets
of the range, see for instance [43, Theorem 4.3.8]. The fact that σ-fragmented
maps enjoy the same property is proved in the next result whose proof has been
taken from [32, Theorem 2.15], where the result has been used as an important
tool for renormings in Banach spaces: we include the proof here for the sake of
completeness.

Theorem 2.8. Let (T, d) and (E, ρ) be metric spaces and f : T → E a σ-
fragmented map. Then, for every t ∈ T there exists a countable set Wt ⊂ T
such that

f(t) ∈
⋃
{f(Wtn) : n = 1, 2, . . .}

ρ

whenever {tn} is a sequence converging to t in (T, d). In particular, f(S) is sepa-
rable whenever S is a separable subset of T .

Proof. Let E =
⋃∞
n=1 En be the σ-scattered function base for the map f provided

by Theorem 2.5, i.e., En = {Enα : α < Γn} with

Enα ⊂ Unα \
⋃
{Unβ : β < α}

and {Unα : α < Γn} a well ordered family of open sets in T . For every m ∈ N we
set

En,mα := {t ∈ Enα : d− dist(t, T \ Unα ) ≥ 1
m
}.

We observe that for t ∈ En,mα we have that

(2.1) Bd

(
t,

1
2m

)
∩ En,mβ = ∅ for all β 6= α, β < Γn.

Indeed, for such a t we have Bd
(
t, 1

2m

)
⊂ Unα and thus Bd

(
t, 1

2m

)
∩ En,mβ = ∅

for β > α. On the other hand, if for some β < α we assume that there exists
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some s ∈ Bd
(
t, 1

2m

)
∩En,mβ then we have that Bd

(
s, 1

2m

)
⊂ Unβ and in particular

t ∈ Unβ that contradicts the fact that t ∈ En,mα ⊂ Enα ⊂ Unα \
⋃
{Unβ : β < α}.

Thus (2.1) is proved.
Let us fix n andm inN and for every t in T and every p ∈ N such thatBd(t, 1/p)

meets at most one member of the family {En,mα : α < Γn}, we choose one
t(n,m, p) in Bd(t, 1/p) ∩

⋃
{En,mα : α < Γn} when this intersection is non-

empty. If we now define

Wt := {t(n,m, p) : n,m, p ∈ N}

we claim that

f(t) ∈
⋃
{f(Wtk) : k ∈ N}

ρ

whenever lim
k→∞

d(tk, t) = 0.

To prove that let us assume that limk→∞ d(tk, t) = 0 and let us fix ε > 0. There
exists an element of the function base Enα ⊂ En, α < Γn, with t ∈ Enα and

(2.2) Enα ⊂ f−1(Bρ(f(t), ε)).

If m is a positive integer with t ∈ En,mα we conclude that

Bd

(
t,

1
2m

)
∩ En,mβ = ∅ for all β < Γn, β 6= α.

If k is a positive integer with d(tk, t) < 1
4m then we have that

Bd

(
tk,

1
4m

)
⊂ B

(
t,

1
2m

)
and that

t ∈ Bd
(
tk,

1
4m

)
∩ En,mα .

Consequently the ball Bd
(
tk,

1
4m

)
only meets the set En,mα of the family {En,mβ :

β < Γn}. Thus tk(n,m, 4m) is defined and we have that

tk(n,m, 4m) ∈ Bd
(
tk,

1
4m

)
∩ En,mα ⊂ Enα,

the inclusion (2.2) allows us to conclude that tk(n,m, 4m) ∈ f−1(Bρ(f(t), ε)).
Thus, we see that tk(n,m, 4m) ∈ Wtk and ρ(f(t), f(tk(n,m, 4m))) < ε and the
proof is over. �

The σ-fragmentability property of maps is not only preserved by countable par-
titions. Indeed, if a map f is σ-fragmented when restricted to the sets of a scattered
partition, then f is σ-fragmented. Being more precise we have the following result.

Proposition 2.9. Let f be a map from a topological space (T, τ) into the met-
ric space (E, ρ). If there exists a well ordered family of open sets {Gγ : γ < Γ}
covering T such that f is σ-fragmented restricted to every atom

Mγ = Gγ \
⋃
{Gβ : β < γ} ,

then the map f is σ-fragmented on the whole of T .
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Proof. Let us fix ε > 0 and let us split Mγ as

Mγ =
⋃{

Mn
γ,ε : n = 1, 2, . . .

}
,

in such a way that f |Mn
γ,ε

is ε-fragmented. If we set Tnε :=
⋃{

Mn
γ,ε : γ < Γ

}
,

then it is clear that T =
⋃
{Tnε : n = 1, 2, ...} . We prove now that f |Tnε is ε-

fragmented: if we fix some non-empty set C ⊂ Tnε and we choose γ0 to be the first
ordinal such that C ∩Mγ0 is non-empty, then

C ∩Gγ0 = C ∩ (Gγ0 \
⋃
{Gβ : β < γ0}) = C ∩Mγ0 .

On the other hand, since C ⊆ Tnε we have that ∅ 6= C ∩Mγ0 = C ∩Mn
γ0,ε and

therefore the ε-fragmentabilility of f |Mn
γ0,ε

applies to provide us with an open set
W in (T, τ) such that W ∩ C ∩Mn

γ0,ε is non-empty and

ρ− diam(f(W ∩ C ∩Mn
γ0,ε)) < ε.

Since W ∩ C ∩Gγ0 = W ∩ C ∩Mn
γ0,ε we have that

ρ− diam(f((W ∩Gγ0) ∩ C)) < ε,

and therefore f |Tnε is ε-fragmented. The proof is over. �

The previous results leads us to the following one: see [25, Theorem 4.1] for
the identity map. We use the following terminology: a subset A of a metric space
(E, ρ) is said to be ε-separable (ε > 0) if there exists some countable subset H in
E such that

A ⊂
⋃
{Bρ(h, ε) : h ∈ H} .

Proposition 2.10. Let f be a map from a topological space (T, τ) into the metric
space (E, ρ). If for every ε > 0 there exists a countable family of subsets {T εn : n ∈
N} that covers T such that for every n ∈ N and every non-empty subset C ⊂ T εn
there exists a τ -open subset V in T with V ∩ C non-empty and with f(V ∩ C)
ε-separable, then the map f is σ-fragmented.

Proof. For a fixed ε > 0 we shall construct a sequence

{f εn : (T, τ)→ (E, ρ) : n = 1, 2, ...}
of σ-fragmented maps such that

ρ− dist(f(t), {f εn(t) : n = 1, 2, ...}) < ε.

Therefore f(t) ∈
{
f

1/p
n (t) : n, p = 1, 2, ...

}ρ
for every t ∈ T , and an appeal to

Proposition 2.3 will ensure that f is σ-fragmented. For a fixed ε > 0 let us split
T =

⋃∞
n=1 T

ε
n satisfying the requirements in our hypothesis for the proposition. It

is easily proved that in every T εn we can produce a well ordered family of open sets{
Gnγ : γ < Γn,ε

}
such that ⋃{

Gnγ : γ < Γn,ε
}

= T εn

and for every atom
Mn
γ = Gnγ \

⋃{
Gnβ : β < γ

}
there exists a countable set Hn

γ in E such that

f(Mn
γ ) ⊂

⋃{
Bρ(h, ε) : h ∈ Hn

γ

}
.



12 B. CASCALES, M. MUÑOZ AND J. ORIHUELA

If Hn
γ =

{
hnγ (j) : j = 1, 2, ...

}
we define now the maps f εn,j : T εn → E given by

f εn,j(t) := hnγ (j) if t ∈Mn
γ .

Since f εn,j is constant on the atoms of a well ordered family of open sets in T εn,
it is σ-fragmented on the whole piece T εn after Proposition 2.9. We now define
arbitrarily but constant the map f εn,j on T \ T εn. The new f εn,j defined on the whole
T is still σ-fragmented. On the other hand, it is clear that

ρ− dist(f(t),
{
f εn,j(t) : j, n = 1, 2, . . .

}
) < ε

for every t ∈ T , and the proof is over. �

We stress that the previous result for f = id has been used in [24] where it is
proved that Cp(K) is σ-fragmented when K is a Rosenthal compacta of functions
with countably many discontinuities at most.

3. σ-FRAGMENTED NORMED SPACES

Let (E, ‖·‖) be a normed space and τ a topology onE coarser than the norm and
H a subset of E. (H, τ) is said to be fragmented (resp. σ-fragmented) by the norm
of E if the inclusion i : (H, τ) → (E, ‖ · ‖) is fragmented (resp. σ-fragmented):
when τ = w we simply say that E is σ-fragmented, [25]. Recall that a subspace F
of E∗ is said to be norming if the function p of X given by

p(x) = sup{|x∗(x)| : x∗ ∈ F ∩BE∗}

is a norm equivalent to ‖ · ‖; if this is the case then Fw∗ = E∗.

Next result is the counterpart for σ-fragmentability of [31, Theorem 8] that has
been proved for LUR renormings

Theorem 3.1. Let (E, ‖ · ‖) be a normed space and F ⊂ E∗ a norming subspace.
The following statements are equivalent:

(i) (E, σ(E,F )) is σ-fragmented by the norm;
(ii) the identity id : E → E is the uniform limit for the norm of a sequence of

maps {In : E → E,n = 1, 2, ...} which are piecewise barely constant for
the topology σ(E,F );

(iii) there exists a sequence of maps {In : E → E,n = 1, 2, ...}which are piece-
wise barely constant for σ(E,F ) such that

x ∈ {In(x) : n = 1, 2, ...}w for every x ∈ E;

(iv) there exists a sequence of maps {In : E → E,n = 1, 2, ...}which are piece-
wise barely constant for σ(E,F ) such that

x ∈ span {In(x) : n = 1, 2, ...}‖·‖ for every x ∈ E.

Proof. The equivalence between (i) and (ii) straightforwardly follows from Corol-
lary 2.2. Clearly (ii)⇒(iii). The rest of the proof uses ideas that already appeared
in Corollary 2.4.

(iii) ⇒(iv) If x ∈ {In(x) : n = 1, 2, ...}w, for every x ∈ E, then the Hahn
Banach theorem, [9, Theorem 3.19], implies that

x ∈ span {In(x) : n = 1, 2, ...}‖·‖ for every x ∈ E
and thus condition (iv) is satisfied.
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(iv) ⇒(i) If condition (iv) is fulfilled then the set of all rational linear com-
binations of {In : E → E,n = 1, 2, ...} is a countable set of maps that we denote
by {Jn : E → E,n = 1, 2, ...}, which are σ-fragmented for the σ(E,F )-topology,
and such that for every x ∈ E we have that

x ∈ {Jn(x) : n = 1, 2, ...}‖·‖.
Proposition 2.3 applies now to allow us to conclude that (i) is satisfied and the
proof is over. �

4. σ-FRAGMENTED ε-SELECTORS FOR THE DUALITY MAPPING

This section is devoted to prove our main results in this paper. The notion below
will be used repeatedly.

Definition 5. Let F be a set-valued map from a set T into the subsets of a metric
space (E, ρ) and ε > 0. An ε-selector for F is a function f : T → E such that

ρ− dist(f(t), F (t)) < ε,

for every t ∈ T .

Each selector for F is clearly an ε-selector, for every ε > 0, but a given ε-
selector is not necessarily a selector. Note that ε-selectors have appeared in Theo-
rem 2.1. Sometimes ε-selectors are the first step when finding a real selector, see
for instance [26, 28, 45].

Godefroy’s result quoted in Theorem 1.1 can be rephrased in the following way
that suites well our purposes.

Lemma 1. Let (X, ‖ · ‖) be a Banach space, J : X → 2BX∗ the duality mapping
and let f be an ε-selector of J , 0 < ε < 1. If Z ⊂ X is a subspace such that f(Z)
is separable for the norm of X∗, then

(4.1) Z∗ = span f(Z)|Z
‖·‖Z∗

and consequently Z∗ is norm separable.

Proof. We start by observing that if Z ⊂ X is a subspace and we consider the
restriction map fZ : Z → Z∗ given by fZ(z) := f(z)|Z , z ∈ Z, then

‖ · ‖Z∗ − dist(fZ(z), JZ(z)) ≤ ‖ · ‖X∗ − dist(f(z), J(z)) < ε,

for every z ∈ Z, where JZ : Z → 2BZ∗ denotes the duality mapping in Z given
at z ∈ Z by JZ(z) := {z∗ ∈ BZ∗ : 〈z, z∗〉 = ‖z‖}. Hence fZ is an ε-selector
for JZ and fZ(Z) = f(Z)|Z ⊂ Z∗ is norm separable. Therefore to prove the
lemma there is no loss of generality if we assume that X = Z, what we do for
the sake of simplicity when writing. Take a countable subset D of f(X) for which
f(X) ⊂ D

‖·‖X∗ . Observe that for every x ∈ X we can pick some x∗x ∈ J(x)
such that ‖x∗x − f(x)‖ < ε. Fix δ > 0 such that ε′ := ε + δ < 1 and for each
x ∈ X take dx in D with ‖f(x)− dx‖ < δ. The set B = {x∗x : x ∈ X} is a James
boundary for BX∗ for which we have B ⊂

⋃
{B(d, ε′) : d ∈ D}. We can apply

now Godefroy’s result, Theorem 1.1, to obtain that

X∗ = span{D}‖·‖X∗ = span{f(X)}‖·‖X∗ ,
and the proof is over. �
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Our main result below is proved using a reduction argument to separable Banach
spaces similar to the one used in [26, Theorem 26] –argument that goes back to [8].
Nonetheless, we note that our situation here is more complicated that the one in [26,
Theorem 26], because we deal here with maps which are only σ-fragmented instead
of the Baire one maps used in [26]: to overcome the extra difficulties in our case
we will make use of the precise description of how separable sets are sent into
separable ones via σ-fragmented maps, see Theorem 2.8 above.

Theorem 4.1. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗ denote the
duality mapping. If for some fixed 0 < ε < 1 there exists a σ-fragmented ε-selector
f : X → X∗ of J , then we have that

span f(X)
‖·‖X∗ = X∗.

Proof. Take a linear form g ∈ X∗ and let us prove that g ∈ span f(X)
‖·‖X∗ . The

idea is to construct a subspace Z ⊂ X satisfying the assumption in Lemma 1, i.e.,
f(Z) ⊂ X∗ norm separable, in such a way that from the condition

g|Z ∈ span{f(Z)|Z}
‖·‖Z∗ (= Z∗)

it follows that
g ∈ span{f(X)}‖·‖X∗ .

Let us find Z. For every x ∈ X we use Theorem 2.8 to pick a countable subset Wx

in X such that
f(x) ∈ {f(Wxn) : n = 1, 2, . . .}‖·‖X∗ ,

whenever (xn)n converges to x in the Banach space (X, ‖ · ‖).
Let us choose {0} 6= Z1 ⊂ X to be a countable Q-linear subspace. Define

D1 :=
⋃
{Wx : x ∈ Z1} which is also a countable set and let us write

C1 := Q− span{f(Wx) : x ∈ D1} := {h1,j : j ∈ N}.

We now find vectors {v1,j : j ∈ N} ⊂ BX such that

〈g − h1,j , v1,j〉 ≥ ‖g − h1,j‖ − 1,

and we finally collect the above v’s as F1 := {v1,j : j ∈ N}.
An induction process produces, for every n ∈ N, countable sets Cn ⊂ X∗,

Zn, Dn ⊂ X and
Fn := {vn,j : j = 1, 2, . . . , } ⊂ BX ,

such that
(i) each Zn is Q-linear subspace with Zn

⋃
Fn ⊂ Zn+1;

(ii) Dn :=
⋃
{Wx : x ∈ Zn};

(iii) if we enumerate Cn := Q− span{f(Wx) : x ∈ Dn} := {hn,j : j ∈ N},
then we have the inequalities

(4.2) 〈g − hn,j , vn,j〉 ≥ ‖g − hn,j‖ −
1
n

for every j ∈ N.

Indeed, if Zi, Di and Fi have been constructed for 1 ≤ i ≤ n, then we define the
countable sets

Zn+1 := Q− span{Zn ∪ Fn},
Dn+1 := ∪{Wx : x ∈ Zn+1},



JAMES BOUNDARIES AND σ-FRAGMENTED SELECTORS 15

and once we have enumerated

Cn+1 := Q− span{f(Wx) : x ∈ Dn+1} := {hn+1,j : j ∈ N}
we simply find vectors

Fn+1 := {vn+1,j : j = 1, 2, . . .}
satisfying the corresponding inequality (4.2).

Let us define the subspace Z :=
⋃
{Zn : n = 1, 2, . . .}‖·‖. Our construction tell

us that f(
⋃∞
n=1Dn) =

⋃
{f(Wx) : x ∈

⋃∞
n=1 Zn}. Given z ∈ Z there exists a

sequence (zm)m in
⋃
{Zn : n = 1, 2, . . .} such that limm zm = z. Hence, by the

choices we have made of the sets W ’s we conclude that

f(z) ∈
⋃
{f(Wzm) : m = 1, 2, . . .}

‖·‖X∗
⊂ f

(
∪ {Dn : n = 1, 2, . . . }

)‖·‖X∗
.

In other words f(Z) ⊂ f
(
∪ {Dn : n = 1, 2, . . . }

)‖·‖X∗ and we can apply Lemma 1
to Z to conclude that

g|Z ∈ Z∗ = span{f(Z)|Z}
‖·‖Z∗ ⊂ span f

(
∪ {Dn : n = 1, 2, . . . }

)
|Z
‖·‖Z∗

.

To finish we prove that the latter implies that g ∈ span{f(X)}‖·‖X∗ . Fix δ > 0
and pick h ∈ span f

(
∪ {Dn : n = 1, 2, . . . }

)
such that

‖g|Z − h|Z‖Z∗ <
δ

2
.

On one hand, since Dj ⊂ Dj+1, j ∈ N, we can write

h =
p∑
i=1

qif(di)|Z , qi ∈ Q, di ∈ Dn, i = 1, 2, . . . , p,

for some n ∈ N. On the other hand, since h =
∑p

i=1 qif(di) ∈ Cn we have
h = hn,j for some j ∈ N and without loss of generality we can and do assume that
n is big enough to have δ > 2

n . All things considered we conclude that:

‖g − h‖X∗ = ‖g − hn,j‖X∗
(4.2)
≤ 1

n
+ 〈g − hn,j , vn,j〉 ≤

δ

2
+ 〈g − hn,j , vn,j〉

vn,j∈Z
≤ δ

2
+ ‖(g − hn,j)|Z‖Z∗

=
δ

2
+ ‖g|Z − h|Z‖Z∗ ≤

δ

2
+
δ

2
= δ.

Taking δ → 0 we have that g ∈ span f(X)
‖·‖X∗

and the proof is over. �

Another consequence of Lemma 1 is the following improvement of a result by
C. Stegall: see, for instance, [5, Theorem I.5.9 and Remark I.5.11], [45, Corol-
lary 9] and [47]. Unless otherwise explicitly stated the notions Baire one, Borel
measurability, fragmentability, etc. when used for selectors f : X → X∗ always
refer to the norm in X and X∗.

Theorem 4.2. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗ be the
duality mapping. The following statements are equivalent:

(i) X is Asplund;
(ii) J has a Baire one selector;
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(iii) J has a σ-fragmented selector;
(iv) for some 0 < ε < 1, J has a σ-fragmented ε-selector;
(v) for some 0 < ε < 1, J has an ε-selector that sends norm separable subsets

of X into norm separable subsets of X∗.

Proof. For the implication (i)⇒(ii) we use that if X is Asplund, then Theorem 8
in [27] provides a Baire one selector for J . For the implication (ii) ⇒(iii) refer
for instance to Proposition 2.3. The implication (iii)⇒(iv) is clear and (iv)⇒(v)
follows from Theorem 2.8.

To finish, if we assume that (v) holds, then Lemma 1 applies to ensure that each
separable subspace of Z ⊂ X has separable dual Z∗. Therefore (i) holds and the
proof is over. �

We note that if we simply want to prove that (i)⇒(vi) in the above theorem there
exists no need to use the full power of the Jayne-Rogers theorem, [27, Theorem 8].
Indeed, if X is an Asplund space, then Proposition 11 in [26] can be used to obtain
that the duality mapping J : X → 2BX∗ is σ- fragmented as a set-valued map: to
obtain now a σ-fragmented ε-selector for J (i.e., a selector as the one in (vi) in the
Theorem above) we can just apply our Theorem 2.1 in this paper.

Corollary 4.3. Let (X, ‖ · ‖) be a Banach space and let J : X → 2BX∗ be the
duality mapping. The following statements are equivalent:

(i) X is Asplund;
(ii) J has a Borel measurable selector;

(iii) J has an analytic selector.

Proof. It is a consequence of Theorem 4.2 and Corollary 2.7. �

The equivalences in the above Corollary can be obtained also from [3, Theorem
A], where the techniques used comes from vector integration.

Corollary 4.4. Let X be a separable Banach space. The following statements are
equivalent:

(i) the norm open subsets of BX∗ are Souslin-F-sets in (BX∗ , w∗);
(ii) X∗ is separable.

Proof. Let us prove (i)⇒(ii). Since X is separable, (BX∗ , w∗) is metrizable and
thus the duality map J : X → 2BX∗ has a selector s : X → BX∗ that is a Baire
one map for the norm in X and the metrizable topology w∗ in BX∗ , see [27].
Since the norm open sets in BX∗ are Souslin-F-sets in (BX∗ , w∗) the identity map
from (BX∗ , w∗) to (BX∗ , ‖·‖X∗) is analytic. Hence the composition of the identity
with s is analytic too, and therefore s is a selector for J that is analytic for the norm
topologies and X and X∗. Corollary 4.3 applies to conclude that X∗ is separable.

The implication (ii) ⇒(i) follows from the fact that in dual separable spaces
X∗ we have the equality of Borel sets in (X,w∗) and Borel sets in (X∗, ‖ · ‖X∗)
because there exists an equivalent dual norm on X∗ such that the weak∗ and the
norm topologies coincide on the unit sphere, see [20, 36]. �

Remark 4.5. Let (X, ‖ · ‖) be a separable Banach space with non-separable dual
X∗. Although the duality mapping J : X → 2BX∗ does not have a σ-fragmented
ε-selector for the norm inX∗, 0 < ε < 1, the arguments in the proof of the previous
result tell us that J admits a selector s : X → BX∗ that is a Baire one map for the
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norm inX and the metrizable topology w∗ inBX∗ . Furthermore, Godefroy proved
that for δ > 0 there exists a subset ∆ of the unit sphere of X , homeomorphic to
the Cantor set {0, 1}N, and such that

‖s(x)− s(y)‖ > 1− δ
for every x 6= y in ∆, [16]. It is unknown if the Cantor set ∆ can be constructed in
such a way that

inf {‖x∗ − y∗‖ : x∗ ∈ J(x), y∗ ∈ J(y)} > 1− δ,
for every x 6= y in ∆. This question is strongly related with Problem I.3 in [5]
where it is asked if X∗ is separable when the set of all support functionals of BX
at all points of Gâteaux differentiability of the norm of X is norm separable, see
[16]. �

We prove next that if X is a Banach space then the unit ball (BX∗ , w∗) is
fragmented by the norm of X∗ if, and only if, it is ε-fragmented by some fixed
0 < ε < 1. To complete the picture we relate these results with Szlenk index that
is recalled in the lines that follow. Given the Banach space X and the w∗-compact
set K ⊂ X∗ we define for any ε > 0

K ′ε := {g ∈ K : ‖ · ‖ − diam(V ∩D) ≥ ε,
for all w∗ − open neigh. V of g}.

Inductively we define for an ordinal α we set

Kα+1
ε := (Kα

ε )′

and if β is a limit ordinal
Kβ
ε :=

⋂
α<β

Kα
ε .

The Szlenk index of a Banach space X is defined as follows. For any ε > 0, let

Sz(X, ε) = min{α : (BX∗)αε = ∅}
if such an ordinal exists and∞ otherwise. Let now set

Sz(X) = sup
ε>0
{Sz(X, ε)}.

A Banach space is Asplund if, and only if, Sz(X) 6=∞. For a survey on the Szlenk
index and its applications see [17].

Theorem 4.6. The following conditions are equivalent for a Banach space X:
(i) X is an Asplund space;

(ii) there exists 0 < ε < 1 such that (BX∗ , w∗) is ε-fragmented, i.e., for every
non-empty subset C ⊂ BX∗ there exists some w∗-open set V in BX∗ such
that C ∩ V 6= ∅ and ‖ · ‖ − diam(C ∩ V ) < ε.

(iii) there exists 0 < ε < 1 such that the duality mapping J is ε-σ-fragmented;
(iv) there exists some 0 < ε < 1 with Sz(X, ε) 6=∞.

Proof. The implication (i) ⇒ (ii) is classical: see for instance [34, 44]. The
implicación (ii)⇒ (iii) follows from [26, Proposition 11]. To prove that (iii)⇒(i)
we read again the proof of (i)⇒(ii) in Theorem 2.1 and observe that for our given
ε and J we can construct a σ-fragmented map fε : (X, ‖ · ‖)→ (X∗, ‖ · ‖X∗) such
that ‖ · ‖ − dist(fε(x), J(x)) < ε for every x ∈ X: now Theorem 4.2 completes
the proof of (iii) ⇒(i). The implication (i) ⇒(iv) follows from the fact that X is
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Asplund if and only if Sz(X) 6= ∞. To finish we prove that (iv)⇒ (ii). Let C be
a non-empty w∗-closed subsets of BX∗ . Let α0 be the first ordinal with

C ∩
(
BX∗ \ (BX∗)α0

ε

)
6= ∅.

By definition of the derivation process we know that α0 must be a successor ordinal
that we can write as α0 = β0 + 1. So we have that

C ⊂ (BX∗)β0
ε but C ∩

(
BX∗ \ ((BX∗)β0

ε )′
)
6= ∅.

Take now some x∗ in the latter non empty set. Then there is a w∗-open set V ⊂ X∗
with x∗ ∈ V and such that

‖ · ‖ − diam(V ∩ (BX∗)β0
ε ) < ε.

Thus W :=
(
BX∗ \ ((BX∗)

β0
ε )′
)
∩ V is a w∗-open set with C ∩W 6= ∅ because

x∗ ∈ C ∩W and
‖ · ‖ − diam(C ∩W ) < ε,

because C ∩W ⊂ (BX∗)
β0
ε ∩ V . �

We note that results in the same spirit than ours previous Theorem have been
proved in [14, 10].

When we replace BX∗ by an arbitrary w∗-compact subset of X∗ we can still
obtain some of the equivalences in Theorem 4.2 and its consequence Theorem 4.6.

Theorem 4.7. Let X be Banach space, let K be a w∗-compact subset of X∗ and
FK : X → 2K the set-valued map defined by

FK(x) := {k ∈ K : k(x) = sup {g(x) : g ∈ K}} .

The following conditions are equivalent:

(i) FK has a Baire one selector;
(ii) FK has a selector that sends norm separable subsets of X into norm sep-

arable subsets for X∗;
(iii) (K,w∗) is fragmented by the norm.

Proof. For the proof (iii) ⇒(i) we refer to [26, 27, 28]. Being the implication (i)
⇒(ii) clear we only give a proof for (ii)⇒(iii). Assume (ii) holds and fix a selector
f : X → K sending norm separable subsets of X into norm separable subsets
of X∗. According to a result by Namioka, see [34, Theorem 3.4], to prove that
(K,w∗) is fragmented by the norm we only have to prove that for each countable
set A ⊂ BX the restriction K|A of K to A is separable when equipped with the
metric dA of uniform convergence onA. If we set Y := spanA‖·‖, then f(Y ) ⊂ K
is norm separable inX∗. If r : X∗ → Y ∗ is the restriction map, then r(K) is a w∗-
compact subset of Y ∗ and r(f(Y )) is a James boundary for r(K). Since r(f(Y ))
is separable for the norm of Y ∗ Rode’s result, see [40], applies to obtain that

r(K) ⊂ co (r(K))
w∗

= co (r(f(Y )))
‖·‖Y ∗

.

Since co (r(f(Y )))
‖·‖Y ∗ is norm separable we obtain that (r(K), ‖ · ‖Y ∗) is sep-

arable. Since A ⊂ BY , we conclude that (K|A, dA) is a continuous image of
(r(K), ‖ · ‖Y ∗). Hence (K|A, dA) is separable and the proof is over. �
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Remark 4.8. The implication (i)⇒(iii) in the Theorem above has been proved in
[26, Theorem 26]; this implication has been proved again in [28, Theorem 7.1]
where the extra hypothesis `1 6⊂ X is required and used and its necessity justified
by the means of an example, see [28, Example 7.1]. We stress that the proviso `1 6⊂
X is unnecessary for these kind of results as our improvement (ii) ⇒(iii) clearly
shows once again. We note that the latter does not lead to any kind contradiction
with Example 7.1 in [28] because this example is simply not correct. The bottom
line in Example 7.1 is that it is claimed, and proved, that the attaining map J :
`1 → 2B`∞ has a selector f : (`1, ‖ · ‖1)→ (`∞, ‖ · ‖∞) that is Baire one. No such
an f can be Baire one. Indeed, observe that if f is any given selector for J then
f(`1) is a James boundary for B`∞ . It is easily checked that every James boundary
for B`∞ must contain the set of all signs

D := {(εn)n : εn ∈ {−1, 1}, for every n ∈ N}.

Since D is uncountable and the ‖ · ‖∞-distance of two different elements of D is
2, we conclude that D is not ‖ · ‖∞-separable. Hence f(`1), that contains D, is
never ‖ · ‖∞-separable. Since (`1, ‖ · ‖1) is separable f cannot be Baire because
otherwise f(`1) must be ‖ · ‖∞-separable but it is not. �

5. APPROXIMATION OF BOUNDARIES BY DESCRIPTIVE SETS

Le us remember now the combinatorial principle that lies in James compactness
theorem as it was found by S. Simons [42], and described in the famous lemma:

Lemma 2 (Simons). Let (zn)n be a uniformly bounded sequence in `∞(C) and let
W be its convex hull. If B is a subset of C such that for every sequence of positive
numbers (λn)n with

∑∞
n=1 λn = 1 there exists b ∈ B such that

(5.1) sup{
∞∑
n=1

λnzn(y) : y ∈ C} =
∞∑
n=1

λnzn(b),

then

(5.2) sup
b∈B
{lim sup

n→∞
zn(b)} ≥ inf{sup

C
w : w ∈W}.

A topological space T is said to be angelic if, whenever A is a relatively count-
ably compact subset of T , its closureA is compact and each element ofA is a limit
of a sequence in A: good references for angelic spaces are [11] and [37]. Cp(T )
stands for the space of real continuous functions endowed with the topology of
pointwise convergence on T .

Lemma 3. Let X be a Banach space, B a James boundary for BX∗ , ε ≥ 0 and
T ⊂ X∗ such that B ⊂

⋃
t∈T B(t, ε). Assume that T has the property that for

each y∗ ∈ X∗ the compact subsets of Cp(T ∪ {y∗}, w) are angelic. The following
statements hold:

(i) if 1 > ε, then X∗ = spanT ‖·‖;
(ii) if ε = 0, then X∗ = spanT ‖·‖ and BX∗ = co(B)

‖·‖
.

Proof. Statement (ii) straightforwardly follows from Theorem I.2 in [15]. State-
ment (i) can be proved exactly with the same ideas of Lemma 4 in [16]. The proof
is by contradiction. Fix ε < ε′ < 1. If spanT ‖·‖  X∗, then there exist x∗∗ ∈ X∗∗
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with ‖x∗∗‖ = 1 and x∗∗|T = 0. Take y∗ ∈ BX∗ such that x∗∗(y∗) > 1+ε′

2 . Con-
sider the restrictions

BX |T∪{y∗} ⊂ BX∗∗ |T∪{y∗} ⊂ Cp(T ∪ {y∗}, w).

Since BX is w∗-dense in BX∗∗ , our hypothesis ensure us of the existence of a
sequence (xk)k in BX such that

(5.3) lim
k
x∗(xk) = x∗∗(x∗) = 0,

for every x∗ ∈ T , and

lim
k
y∗(xk) = x∗∗(y∗) >

1 + ε′

2
.

From the last inequality, we can assume without loss of generality that

(5.4) y∗(xk) >
1 + ε′

2
for every k ∈ N.

It follows from (5.3) and the inclusion B ⊂
⋃
t∈T B(t, ε) that for every b∗ ∈ B we

have
lim sup
k→∞

b∗(xk) ≤ ε.

Simon’s inequality, Lemma 2, applied to C := BX∗ , B and the sequence (xk)k
ensures the existence of x ∈ co({xk : k ∈ N}) with ‖x‖ < ε′ but on the other
hand we have that

ε′ > ‖x‖ ≥ y∗(x)
(5.4)
>

1 + ε′

2
.

The inequality ε′ > 1+ε′

2 implies that ε′ > 1 and we reach a contradiction that
finishes the proof. �

Recall that a topological space (T, τ) is said to be countably K-determined
(resp. K-analytic) if there exists a upper-semicontinuous set-valued map F : M →
2T for some separable metric space (resp. Polish space) M such that F (M) = T
and F (m) is compact for each m ∈ M . Notice that this class of spaces does
properly contain the classes of K-analytic and (so) the σ-compact spaces. The pa-
per [46] is a milestone when speaking about Banach spaces which are countably
K-determined when endowed with their weak topologies. The main result in [37]
states that if T is a countably K-determined space then Cp(T ) is angelic.

Next theorem is the outcome of the previous preparation.

Theorem 5.1. LetX be a Banach space, B a James boundary forBX∗ , 1 > ε ≥ 0
and T ⊂ X∗ such that B ⊂

⋃
t∈T B(t, ε). If (T,w) is countably K-determined

(resp. K-analytic) then:

(i) X∗ = spanT ‖·‖ and X∗ is weakly countably K-determined (resp. weakly
K-analytic).

(ii) Every James boundary for BX∗ has property (S). In particular BX∗ =
co(B)

‖·‖
.

Proof. The equality X∗ = spanT ‖·‖ in (i) follows from Lemma 3 bearing in mind
that T ∪ {y∗} is countably K-determined for every y∗ ∈ X∗ and therefore the
space Cp(T ∪ {y∗}) is angelic, [37]. If (T,w) is countably K-determined (resp.
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K-analytic) then spanT ‖·‖ is again weakly countably K-determined (resp. K-
analytic) by a result of [46] and thus (i) is proved. Statement (ii) follows from
statement (ii) in Lemma 3 applied for T = X∗. �

We stress that weakly countablyK-determined spaces are weakly Lindelöf. Fur-
thermore if X is a Banach space such that X∗ is weakly Lindelöf, then X is As-
plund, see [6, Proposition 1.8]. In particular, a fortiori the Banach spaces we deal
with in Theorem 5.1 are Asplund spaces. We might think that for an Asplund space

X and any boundary B of BX∗ we must have that BX∗ = co(B)
‖·‖

. This is not
true in general as the following example taken from [15] shows: let ω1 be the first
uncountable ordinal and let X = C([0, ω1]) be the space of continuous functions
on [0, ω1] equipped with the supremum norm. X is an Asplund space and if δα de-
notes the Dirac measure at α then the set B := {±δα : 0 ≤ α < ω1} is a boundary

for BX∗ for which δω1 ∈ BX∗ \ co(B)
‖·‖

. The best positive results in this setting
that we include below are due to Haydon and Godefroy.

Theorem 5.2 (Haydon,[23]). Let X be a Banach space. The following statements
are equivalent:

(i) `1 6⊂ X;

(ii) for every w∗-compact convex subset C of X∗, C = co(ExtC)
‖·‖

;

(iii) for every w∗-compact subset K of X∗, co(K)
w∗

= co(K)
‖·‖

.

Theorem 5.3 (Godefroy,[15]). Let X be a separable Banach space. The following
statements are equivalent:

(i) `1 6⊂ X;
(ii) for every w∗-compact subset K of X∗ and every James boundary B of K

we have co(K)
w∗

= co(B)
‖·‖

;
(iii) for every w∗-compact convex subset C of X∗ and every James boundary

B of C we have C = co(B)
‖·‖

.

The example given on C([0, ω1]) after Theorem 5.1 shows that neither Theo-
rem 5.2 holds for boundaries different from the extreme points –(i)⇒(ii) fails– nor
Theorem 5.3 holds for all boundaries when X is not separable –(i)⇒(ii) fails–.
Nonetheless, it is possible to have the best of the above two theorems for general
Banach spaces and arbitrary James boundaries if we replace ‖ · ‖ in X∗ by the
topology γ of uniform convergence on bounded and countable subsets of X .

Theorem 5.4. Let X be a Banach space. The following statement are equivalent:

(i) `1 6⊂ X;
(ii) for every w∗-compact subset K of X∗ and any James boundary B of K

we have co(K)
w∗

= co(B)
γ
;

(iii) for every w∗-compact subset K of X∗, co(K)
w∗

= co(K)
γ
.

Proof. (i)⇒(ii) We have to prove that for each ε > 0, x∗ ∈ co(K)
w∗

andD ⊂ BX
bounded and countable there exists b∗ ∈ co(B) such that

(5.5) |x∗(d)− b∗(d)| < ε, for every d ∈ D.



22 B. CASCALES, M. MUÑOZ AND J. ORIHUELA

Define Y := spanD. Set r : X∗ → Y ∗ the restriction map. Then r(B) is
a boundary for the w∗-compact set r(K) ⊂ Y ∗. Since r is linear and w∗-w∗-
continuous we obtain that

x∗|Y = r(x∗) ∈ r
(
co(K)

w∗) ⊂ co(r(K))
w∗
.

Since Y is separable and does not contain `1, Theorem 5.3 applies to conclude that

co(r(K))
w∗

= co(r(B))
‖·‖Y . Therefore

x∗|Y = r(x∗) ∈ co(r(B))
‖·‖Y

that clearly implies (5.5).
The implication (ii)⇒(iii) is obvious. Our proof by contradiction for (iii)⇒(i) is

almost the same, with a little extra remark, as the proof for (iii)⇒(i) in Theorem 5.2
as presented in [23, Theorem 3.3]. Assume that there exists an isomorphism onto
its image T : `1 → X . Then the adjoint map S := T ∗ : X∗ → (`1)∗ is onto. If we
set (en)n to denote the canonical basis in `1 and we identify (`1)∗ = `∞ then S is
nothing else but the map

S : X∗ −→ `∞

x∗ →(x∗(Ten))n.

Notice that S is w∗-w∗-continuous and also γ-‖ · ‖∞-continuous. Take a w∗-
compact subset C ⊂ `∞ such that

(5.6) co(C)
‖·‖∞  co(C)

w∗
,

see the proof of [23, Proposition 3.2]. We take now K a w∗-compact subset of X∗

such that S(K) = C. Then we have that co(K)
γ  co(K)

w∗
, because otherwise

the equality would imply

co(C)
w∗

= co(S(K))
w∗

= S(co(K))
w∗

= S
(
co(K)

w∗)
=

= S
(
co(K)

γ) ⊂ S(co(K))
‖·‖∞ = co(C)

‖·‖∞
,

that contradicts (5.6) and finishes the proof. �

We note that implication (i)⇒(ii) in the last is indeed a James compactness the-
orem for the w∗-topology.

Corollary 5.5. LetX be a Banach space such that `1 6⊂ X . IfK ⊂ X∗ is bounded,
γ-closed, convex and for every x ∈ X there exists some k∗ ∈ K such that

k∗(x) = sup {y∗(x) : y∗ ∈ K}
then K is a w∗-compact subset of X∗.

Proof. Since K is a James boundary for Kw∗ , Theorem 5.4 applies to yield the
equalities below that implies that K is w∗-compact:

co(Kw∗)
w∗

= co(K)
γ

= K. �

A Banach space X or more generally a convex subset M of X is said to have
property C (after Corson) if each collection of relatively closed convex subsets of
M with empty intersection has a countable subcollection with empty intersection.
If (M,w) is Lindelöf, then M has property C since closed convex sets in X are
also weak-closed. A good reference for property C is [39].
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The following Lemma easily follows from [1, Lemma 9] and also from the main
result in [39].

Lemma 4. LetX be a Banach space. IfX∗ has property C, then γ is stronger than
the weak topology of X∗.

When X∗ has property C the above results lead to the following consequence.

Corollary 5.6. Let X be a Banach space such that X∗ has property C. Then for
every w∗-compact subset K of X∗ and any James boundary B of K we have

co(K)
w∗

= co(B)
‖·‖
.

In particular every boundary for BX∗ has property (S).

Proof. On the one hand if X∗ has property C then `1 6⊂ X . On the other hand if
X∗ has property C, Lemma 4 implies that the dual of (X∗, γ) is X∗∗ and therefore
for any convex set C ⊂ X∗ we have that Cγ = C

‖·‖. The Corollary now follows
from Theorem 5.4. �

Theorem 5.7. Let X be a Banach space. Then for every w∗-compact weakly Lin-
delöf subset K of X∗ and any James boundary B of K we have

co(K)
w∗

= co(B)
‖·‖
.

Proof. Theorem 4.5 in [2] ensures that

co(K)
w∗

= co(K)
‖·‖X∗

.

Now, we apply [2, Corollary 6.4] to obtain that spanK‖·‖X∗ contains co(K)
w∗

and
it is a weakly Lindelöf determined Banach space, i.e., its dual unit ball is Corson
compact and in particular angelic when endowed with the w∗ topology. Therefore,
every element in the bidual unit ball BX∗∗ is the limit in the topology of pointwise

convergence on co(K)
σ(X∗,X)

of a sequence in BX . The conclusion follows now
from Theorem I.2 in [15]. �
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